0 and 1 in Greek mathematics

Following up on an earlier post about zero in Greek mathematics and this timeline of zero, I want to say something more about the role of 0 (zero) and 1 (one) in ancient Greek thought. Unfortunately, some of the discussion on Greek mathematics out there is a bit like this:

0 and 1 as quantities

The ancient Greeks could obviously count, and they had bankers, so they understood credits and debts, and the idea of your bank account being empty. However, they had not reached the brilliant insight of Brahmagupta, around 628 AD, that you could multiply a debt (−) and a debt (−) to get a credit (+).

The ancient Greeks had three words for “one” (εἷς = heis, μία = mia, ἑν = hen), depending on gender. So, in the opening line of Plato’s Timaeus, Socrates counts: “One, two, three; but where, my dear Timaeus, is the fourth of those who were yesterday my guests … ? (εἷς, δύο, τρεῖς: ὁ δὲ δὴ τέταρτος ἡμῖν, ὦ φίλε Τίμαιε, ποῦ τῶν χθὲς μὲν δαιτυμόνων … ; )

The Greeks had two words for “nothing” or “zero” (μηδέν = mēden and οὐδέν = ouden). So, in the Christian New Testament, in John 21:11, some fisherman count fish and get 153, but in Luke 5:5, Simon Peter says “Master, we toiled all night and took nothing (οὐδὲν)!

0 and 1 in calculations

In ordinary (non-positional) Greek numerals, the Greeks used α = 1, ι = 10, and ρ = 100. There was no special symbol for zero. Greek mathematicians, such as Archimedes, wrote numbers out in words when stating a theorem.

Greek astronomers, who performed more complex calculations, used the Babylonian base-60 system. Sexagesimal “digits” from 1 to 59 were written in ordinary Greek numerals, with variations of ō for zero. The overbar was necessary to distinguish ō from the letter ο, which denoted the number 70 (since an overbar was a standard way of indicating abbreviations, it is likely that the symbol ō was an abbreviation for οὐδὲν).

Initially (around 100 AD) the overbar was quite fancy, and it became shorter and simpler over time, eventually disappearing altogether. Here it is in a French edition of Ptolemy’s Almagest of c. 150 AD:

In Greek-influenced Latin astronomical calculations, such as those used by Christians to calculate the date of Easter, “NULLA” or “N” was used for zero as a value. Such calculations date from the third century AD. Here (from Gallica) is part of a beautiful late example from around 700 AD (the calendar of St. Willibrord):

Outside of astronomy, zero does not seem to get mentioned much, although Aristotle, in his Physics (Book 4, Part 8) points out, as if it is a well-known fact, that “there is no ratio of zero (nothing) to a number (οὐδὲ τὸ μηδὲν πρὸς ἀριθμόν),” i.e. that you cannot divide by zero. Here Aristotle may have been ahead of Brahmagupta, who thought that 0/0 = 0.

0 and 1 as formal numbers?

We now turn to the formal theory of numbers, in the Elements of Euclid and other works. This is mathematics in a surprisingly modern style, with formal proofs and (more or less) formal definitions. In book VII of the Elements (Definitions 1 & 2), Euclid defines the technical terms μονάς = monas (unit) and ἀριθμὸς = arithmos (number):

  1. A monas (unit) is that by virtue of which each of the things that exist is called one (μονάς ἐστιν, καθ᾽ ἣν ἕκαστον τῶν ὄντων ἓν λέγεται).
  2. An arithmos (number) is a multitude composed of units (ἀριθμὸς δὲ τὸ ἐκ μονάδων συγκείμενον πλῆθος).

So 1 is the monas (unit), and the technical definition of arithmos excludes 0 and 1, just as today the technical definition of natural number is taken by some mathematicians to exclude 0. However, in informal Greek language, 1 was still a number, and Greek mathematicians were not at all consistent about excluding 1. It remained a number for the purpose of doing arithmetic. Around 100 AD, for example, Nicomachus of Gerasa (in his Introduction to Arithmetic, Book 1, VIII, 9–12) discusses the powers of 2 (1, 2, 4, 8, 16, 32, 64, 128, 256, 512 = α, β, δ, η, ιϛ, λβ, ξδ, ρκη, σνϛ, φιβ) and notes that “it is the property of all these terms when they are added together successively to be equal to the next in the series, lacking a monas (συμβέβηκε δὲ πᾱ́σαις ταῖς ἐκθέσεσι συντεθειμέναις σωρηδὸν ἴσαις εἶναι τῷ μετ’ αὐτὰς παρὰ μονάδα).” In the same work (Book 1, XIX, 9), he provides a multiplication table for the numbers 1 through 10:

The issue here is that Euclid was aware of the fundamental theorem of arithmetic, i.e. that every positive integer can be decomposed into a bag (multiset) of prime factors, in no particular order, e.g. 60 = 2×2×3×5 = 2×2×5×3 = 2×5×2×3 = 5×2×2×3 = 5×2×3×2 = 2×5×3×2 = 2×3×5×2 = 2×3×2×5 = 3×2×2×5 = 3×2×5×2 = 3×5×2×2 = 5×3×2×2.

Euclid proves most of this theorem in propositions 30, 31 and 32 of his Book VII and proposition 14 of his Book IX. The number 0 is obviously excluded from consideration here, and the number 1 is special because it represents the empty bag (even today we recognise that 1 is a special case, because it is not a prime number, and it is not composed of prime factors either – although, as late as a century ago, there were mathematicians who called 1 prime, which causes all kinds of problems):

  • If two numbers (arithmoi) by multiplying one another make some number, and any prime number measure the product, it will also measure one of the original numbers (ἐὰν δύο ἀριθμοὶ πολλαπλασιάσαντες ἀλλήλους ποιῶσί τινα, τὸν δὲ γενόμενον ἐξ αὐτῶν μετρῇ τις πρῶτος ἀριθμός, καὶ ἕνα τῶν ἐξ ἀρχῆς μετρήσει) – i.e. if a prime p divides ab, then it divides a or b or both
  • Any composite number is measured by some prime number (ἅπας σύνθετος ἀριθμὸς ὑπὸ πρώτου τινὸς ἀριθμοῦ μετρεῖται) – i.e. it has a prime factor
  • Any number (arithmos) either is prime or is measured by some prime number (ἅπας ἀριθμὸς ἤτοι πρῶτός ἐστιν ἢ ὑπὸ πρώτου τινὸς ἀριθμοῦ μετρεῖται) – this would not be true for 1
  • If a number be the least that is measured by prime numbers, it will not be measured by any other prime number except those originally measuring it (ἐὰν ἐλάχιστος ἀριθμὸς ὑπὸ πρώτων ἀριθμῶν μετρῆται, ὑπ᾽ οὐδενὸς ἄλλου πρώτου ἀριθμοῦ μετρηθήσεται παρὲξ τῶν ἐξ ἀρχῆς μετρούντων) – this is a partial expression of the uniqueness of prime factorisation

The special property of 1, the monas or unit, was sometimes expressed (e.g. by Nicomachus of Gerasa) by saying that it is the “beginning of arithmoi … but not itself an arithmos.” As we have already seen, nobody was consistent about this, and there was, of course, no problem in doing arithmetic with 1. Everybody agreed that 1 + 2 + 3 + 4 = 10. In modern mathematics, we would avoid problems by saying that natural numbers are produced using the successor function S, and distinguish that function from the number S(0) = 1.

The words monas and arithmos occur in other Greek writers, not always in the Euclidean technical sense. For example, in a discussion of causes and properties in the Phaedo (105c), Plato tells us that “if you ask what causes an arithmos to be odd, I shall not say oddness, but the monas (οὐδ᾽ ᾧ ἂν ἀριθμῷ τί ἐγγένηται περιττὸς ἔσται, οὐκ ἐρῶ ᾧ ἂν περιττότης, ἀλλ᾽ ᾧ ἂν μονάς).” Aristotle, in his Metaphysics, spends some time on the philosophical question of what the monas really is.

In general, the ancient Greeks seem to have had quite a sophisticated understanding of 0 and 1, though hampered by poor vocabulary and a lack of good symbols. Outside of applied mathematics and astronomy, they mostly worked with what we would call the multiplicative group of the positive rational numbers. What they were missing was any awareness of negative numbers as mathematical (not just financial) concepts. That had to wait until Brahmagupta, and when it came, 0 suddenly became a whole lot more interesting, because it eventually became possible to define more advanced mathematical concepts like fields.


The history of zero: an infographic

Following up on an earlier post about Zero in Greek mathematics, here is a timeline for the use of zero in Europe (click to zoom). I have used images of, or quotes from, primary sources where possible (reliably dated Indian primary sources are much harder to find than Greek ones, unfortunately).

Chinese uses of zero are probably also derived from the Greeks, but Mayan uses are clearly independent.


Zero in Greek mathematics

I recently read The Nothing That Is: A Natural History of Zero by Robert M. Kaplan. Zero is an important concept in mathematics. But where did it come from?

The Babylonian zero

From around 2000 BC, the Babylonians used a positional number system with base 60. Initially a space was used to represent zero. Vertical wedges mean 1, and chevrons mean 10:

This number (which we can write as 2 ; 0 ; 13) means 2 × 3600 + 0 × 60 + 13 = 7213. Four thousand years later, we still use the same system when dealing with angles or with time: 2 hours, no minutes, and 13 seconds is 7213 seconds.

Later, the Babylonians introduced a variety of explicit symbols for zero. By 400 BC, a pair of angled wedges was used:

The Babylonians were happy to move the decimal point (actually, “sexagesimal point”) forwards and backwards to facilitate calculation. The number ½, for example, was treated the same as 30 (which is half of 60). In much the same way, 20th century users of the slide rule treated 50, 5, and 0.5 as the same number. What is 0.5 ÷ 20? The calculation is done as 5 ÷ 2 = 2.5. Only at the end do you think about where the decimal point should go (0.025).

Greek mathematics in words

Kaplan says about zero that “the Greeks had no word for it.” Is that true?

Much of Greek mathematics was done in words. For example, the famous Proposition 3 in the Measurement of a Circle (Κύκλου μέτρησις) by Archimedes reads:

Παντὸς κύκλου ἡ περίμετρος τῆς διαμέτρου τριπλασίων ἐστί, καὶ ἔτι ὑπερέχει ἐλάσσονι μὲν ἤ ἑβδόμῳ μέρει τῆς διαμέτρου, μείζονι δὲ ἢ δέκα ἑβδομηκοστομόνοις.

Phonetically, that is:

Pantos kuklou hē perimetros tēs diametrou triplasiōn esti, kai eti huperechei elassoni men ē hebdomō merei tēs diametrou, meizoni de ē deka hebdomēkostomonois.

Or, in English:

The perimeter of every circle is triple the diameter plus an amount less than one seventh of the diameter and greater than ten seventy-firsts.

In modern notation, we would express that far more briefly as 10/71 < π − 3 < 1/7 or 3.141 < π < 3.143.

The Greek words for zero were the two words for “nothing” – μηδέν (mēden) and οὐδέν (ouden). Around 100 AD, Nicomachus of Gerasa (Gerasa is now the city of Jerash, Jordan), wrote in his Introduction to Arithmetic (Book 2, VI, 3) that:

οὐδέν οὐδενί συντεθὲν … οὐδέν ποιεῖ (ouden oudeni suntethen … ouden poiei)

That is, zero (nothing) can be added:

nothing and nothing, added together, … make nothing

However, we cannot divide by zero. Aristotle, in Book 4, Lectio 12 of his Physics tells us that:

οὐδὲ τὸ μηδὲν πρὸς ἀριθμόν (oude to mēden pros arithmon)

That is, 1/0, 2/0, and so forth make no sense:

there is no ratio of zero (nothing) to a number

If we view arithmetic primarily as a game of multiplying, dividing, taking ratios, and finding prime factors, then poor old zero really does have to sit on the sidelines (in modern terms, zero is not part of a multiplicative group).

Greek calculation

For business calculations, surveying, numerical tables, and most other mathematical calculations (e.g. the proof of Archimedes’ Proposition 3), the Greeks used a non-positional decimal system, based on 24 letters and 3 obsolete letters. In its later form, this was as follows:

Units Tens Hundreds
α = 1 ι = 10 ρ = 100
β = 2 κ = 20 σ = 200
γ = 3 λ = 30 τ = 300
δ = 4 μ = 40 υ = 400
ε = 5 ν = 50 φ = 500
ϛ (stigma) = 6 ξ = 60 χ = 600
ζ = 7 ο = 70 ψ = 700
η = 8 π = 80 ω = 800
θ = 9 ϙ (koppa) = 90 ϡ (sampi) = 900

For users of R:

to.greek.digits <- function (v) { # v is a vector of numbers
  if (any(v < 1 | v > 999)) stop("Can only do Greek digits for 1..999")
  else {
    s <- intToUtf8(c(0x3b1:0x3b5,0x3db,0x3b6:0x3c0,0x3d9,0x3c1,0x3c3:0x3c9,0x3e1))
    greek <- strsplit(s, "", fixed=TRUE)[[1]]
    d <- function(i, power=1) { if (i == 0) "" else greek[i + (power - 1) * 9] }
    f <- function(x) { paste0(d(x %/% 100, 3), d((x %/% 10) %% 10, 2), d(x %% 10)) }
    sapply(v, f)
  }
}

For example, the “number of the beast” (666) as written in Byzantine manuscripts of the Bible is χξϛ (older manuscripts spell the number out in words: ἑξακόσιοι ἑξήκοντα ἕξ = hexakosioi hexēkonta hex).

This Greek system of numerals did not include zero – but then again, it was used in situations where zero was not needed.

Greek geometry

Most of Greek mathematics was geometric in nature, rather than based on calculation. For example, the famous Pythagorean Theorem tells us that the areas of two squares add up to give the area of a third.

In geometry, zero was represented as a line of zero length (i.e. a point) or as a rectangle of zero area (i.e. a line). This is implicit in Euclid’s first two definitions (σημεῖόν ἐστιν, οὗ μέρος οὐθέν = a point is that which has no part; γραμμὴ δὲ μῆκος ἀπλατές = a line is breadthless length).


In the Pythagorean Theorem, lines are multiplied by themselves to give areas, and the sum of the two smaller areas gives the third (image: Ntozis)

Graeco-Babylonian mathematics

In astronomy, the Greeks continued to use the Babylonian sexagesimal system (much as we do today, with our “degrees, minutes, and seconds”). Numbers were written using the alphabetic system described above, and at the time of Ptolemy, zero was written like this (appearing in numerous papyri from 100 AD onwards, with occasional variations):

For example, 7213 seconds would be β ō ιγ = 2 0 13 (for another example, see the image below). The circle here may be an abbreviation for οὐδέν = nothing (just as early Christian Easter calculations used N for Nulla to mean zero). The overbar is necessary to distinguish ō from ο = 70 (it also resembles the overbars used in sacred abbreviations).

This use of a circle to mean zero was passed on to the Arabs and to India, which means that our modern symbol 0 is, in fact, Graeco-Babylonian in origin (the contribution of Indian mathematicians such as Brahmagupta was not the introduction of zero, but the theory of negative numbers). I had not realised this before; from now on I will say ouden every time I read “zero.”


Part of a table from a French edition of Ptolemy’s Almagest of c. 150 AD. For the angles x = ½°, 1°, and 1½°, the table shows 120 sin(x/2). The (sexagesimal) values, in the columns headed ΕΥΘΕΙΩΝ, are ō λα κε = 0 31 25 = 0.5236, α β ν = 1 2 50 = 1.0472, and α λδ ιε = 1 34 15 = 1.5708. The columns on the right are an aid to interpolation. Notice that zero occurs six times.