iESC Race Report #3

Detailed results for the recent iLumen European Solar Challenge (iESC) have just been released. The two charts above (for Challengers) and below (for Cruisers) visualise the results. The “Total” bar on the left in each case is the sum of the other bars, which reflect points for the various sub-challenges. In the Challenger class:

  • Twente won, with Red Shift (which did the most laps) and also came second with the older Red One (which did almost as many laps, as well as doing the fastest lap and winning the KO chicane);
  • Aachen came third in their Sonnenwagen, having put in a good all-round performance; and
  • Megalux came fourth overall, having come third in the lap count.

In the Cruiser class:

  • Lodz won, with the highest calculated cruiser score (they also won the safety sub-challenge, about which I’ve heard nothing);
  • Bochum came second and third in their sexy SunRiser and blue.cruiser; and
  • Kratos EAFIT–Postobon came fourth overall, in their lovely solar sports vehicle, having run the fastest lap, won the regularity sub-challenge, and come third in the KO chicane.

See here for more information on the teams. Well done to everybody for coping so well with the terrible weather!

Update: And don’t forget to watch the great series of videos from Bochum.


Advertisements

iESC Race Report #2

The iLumen European Solar Challenge (iESC) in Belgium has just finished, under extremely wet conditions. Lap counts are shown below. Twente clocked up about 85% of the laps they did when they won in 2016. I will post about official results when they are released. However, Twente are clearly Challenger champions, while Lodz Solar Team has won the Cruiser class on points.


iESC Race Report #1

The iLumen European Solar Challenge (iESC) in Belgium has held the KO Chicane component of the event, under extremely wet conditions (see this!).

This component of iESC counts for 20% of final points. On mean times, Cruisers were 2.1 seconds faster in the Chicane than Challengers. The revised chart below (click to zoom) reflects the scoring (which, it must be said, has Bochum bringing home the bacon so far). Times shown are the best out of qualifying, semi-final, and final times. See also this excellent video.

Tomorrow is the big race. For fans at home interested in the weather, here is a webcam nearby, looking towards the Zolder racetrack. See also my iESC teams list and information page and the live timing board.


Solar Car World Rankings


Nuon at WSC 17 (photo: Anthony Dekker)

Here is my personal world ranking of the top twenty Challenger-class solar cars. It was produced entirely algorithmically by using linear regression on historical data to build mappings between WSC rankings and those of other races, and then applying those mappings to the results of four recent events (SASOL 16, ESC 16, WSC 17, and ASC 18). There is as yet insufficient data to rate Cruiser-class teams (apart from the actual WSC 17 results: 1 Eindhoven, 2 Bochum, 3 Arrow).

Rank Team SASOL16 ESC16 WSC17 ASC18
1 NL  Nuon Solar Team 1 1
2 US  University of Michigan 2 2
3 NL  Solar Team Twente 1 5
4 BE  Punch Powertrain Solar Team 2 3
5 JP  Tokai University 2 4
6 AU  Western Sydney Solar Team 6 1
7 JP  Kogakuin University 7
8 HU  Kecskemét College GAMF (Megalux) 3
9 SE  JU Solar Team 8
10 US  Stanford Solar Car Project 9
11 CL  Antakari Solar Team 10
12 ZA  North West University 4 P
13 CA  University of Toronto (Blue Sky) 11
14 CA  ETS Quebec (Eclipse) 3
15 JP  Nagoya Institute of Technology 12
16 TR  Istanbul Technical University (ITU) 7 P
17 CA  Poly Montreal (Esteban) 4
18 CH  Solar Energy Racers 8
19 US  Massachusetts Institute of Technology 5
20 TR  Dokuz Eylül University (Solaris) 9

Note that, for ESC 16, the 3rd, 4th, and 5th place cars were all Bochum Cruisers and are therefore not listed here, while 6th was Onda Solare, which is now also a Cruiser team. The letter P marks cars that participated in WSC 17, but did not finish, and thus were not ranked. It must also be said that Eclipse, Esteban, and MIT should probably be ranked higher than they are here – the algorithm is not taking into account the dramatic improvement in ASC teams this year.


Michigan at WSC 17 (photo: Anthony Dekker)


ASC 18: Convoys


A typical convoy (click to zoom, photo of solar car by Jorrit Lousberg)

Solar cars in the American Solar Challenge each form part of a convoy – a typical convoy is shown above. The lead (front) escort vehicle must travel 500 metres or less ahead of the solar car, with headlights on and roof-mounted amber lights flashing.

The chase (rear) escort vehicle follows directly behind the solar car, also with roof-mounted amber lights flashing, and bearing a sign that says “CAUTION: SOLAR CAR CARAVAN AHEAD.” Both escort vehicles must carry safety equipment such as first aid kits and fire extinguishers. The chase (rear) escort vehicle typically also houses the team’s Decision-Making Unit (DMU), who plan the strategy for the race.


Left: Michigan’s lead and chase vehicles for the 2010 American Solar Challenge (credit). Right: interior of Nuon’s chase vehicle for the 2011 World Solar Challenge (credit).

The truck (or car with a trailer) rides further behind (at least 1 km). It carries equipment and provides the ability to transport the solar car in the event of a breakdown.


Left: Michigan’s semi-trailer driving down the Stuart Highway in the 2011 World Solar Challenge (photo: Marcin Szczepanski). Right: Calgary’s road crew truck from the 2005 North American Solar Car Challenge (photo: James Tworow).

The (optional) scout vehicle rides well ahead (at least 1 km), checking out road conditions and potential hazards. There may also be additional vehicles, like media cars, or a weather car watching for clouds an hour or so ahead of the solar car. All the cars in the convoy stay in touch using CB radio. It takes a whole team to race a solar car! Here are some team descriptions of their convoys:

This post has been adapted and updated from a previous one.


ASC 11: Leadership


Nuon Solar Team celebrates their 2017 WSC win (photo: Anthony Dekker)

Ernest Hemingway famously said that “war is fought by human beings.” It’s the same with solar cars – they are built and raced by human beings. Or, as Solar Team Twente likes to say, they are “powered by human energy.

There are many aspects to this human side of solar car racing. I’ve written before about how little things like team clothing contribute to team cohesion. A diversity of skills is important if a team is to succeed. During the race, nutrition is one of the things necessary to keep people working at top efficiency. But today, I want to talk about team leadership.

Engineering leadership is critically important, although surprisingly little is written about it. Tracy Kidder produced a fantastic, almost ethnographic, description of real-world engineering in his 1981 book The Soul of a New Machine, but even that book has the actual leadership happening mostly in the background.

A century earlier, Leo Tolstoy opened his novel Anna Karenina with the words “Happy families are all alike; every unhappy family is unhappy in its own way” (“Все счастливые семьи похожи друг на друга, каждая несчастливая семья несчастлива по-своему”). That is true also for solar car teams. Many things have to be done right if a team is to succeed, but doing one thing badly is enough to stop a team in its tracks.

A team leader must, first of all, motivate team members to do their best – it is no accident that all the solar car team leaders I’ve met have been really nice people. A team leader must make sure that the overall problem of building, racing, and finding sponsorship for a solar car is broken down into manageable pieces, and that the right person is in charge of each piece – this is the essence of engineering.

A solar-car team leader must also have – and promote – a clear vision of the car that the team is going to build. It is possible to have a world-class suspension, a world-class body, world-class solar cells, and world-class everything else, and still fail, because the components were designed under different assumptions, and don’t actually fit together to make a world-class car.

A team leader must keep an eye on the critical path as well. Building a solar car for a race is one of the most challenging kinds of engineering project – one where the delivery date is fixed in stone. What project managers call the critical path is the sequence of activities which, if they take any longer than planned, are guaranteed to delay project completion. Generally, the schedule for building and testing a solar car doesn’t leave much room for that kind of schedule slippage.

One perennial question with solar car team leaders is how long it takes them to realise that there is a problem requiring the team to either (a) change the way it operates or (b) pull out of the competition. Each year, I am reminded by somebody or other of Napoleon’s 1812 invasion of Russia, summarised so well in the famous data visualisation above (by Charles Minard).


Napoleon’s death march (painted by Illarion Pryanishnikov)

Napoleon began his invasion with 422,000 men, and reached Moscow with only 100,000 survivors. This was not enough to do anything, so he turned around and went home again, losing most of his remaining troops to cold and skirmishes in the process. I have often wondered at what point Napoleon realised that his plan was not working the way that it was supposed to. In a similar way, there is always a solar car team that begins a last-minute “death-march,” working until 3:00 AM each night, desperately trying to finish their car. The early hours of the morning are not a good time to be making safety-critical engineering decisions, and teams which leave it so late to panic generally don’t do very well.

But enough of Napoleon. Let us listen to some men and women who know how it’s done (translations from Dutch are my own best attempts):

Olivier Berghuis, Solar Team Twente (2017): “As team leader you are the one ultimately responsible for the success of the project. That means that you have to keep a close eye on the progress of the project’s technical, communication, and financial aspects. The mood of the team and the personal development of each team member are also critically important important responsibilities of the team leader.” (“Als teamleider ben je eindverantwoordelijk voor het slagen van het project. Dat betekent dat je de voortgang van het project op technisch, communicatief en financieel gebied in de gaten moet houden. Daarnaast is de sfeer binnen het team en de persoonlijke ontwikkeling van elk teamlid een zeer belangrijke verantwoordelijkheid van de teamleider.”)

Shihaab Punia, University of Michigan (2016): “… build the best possible team and team culture …”


Photo: Jerome Wassenaar

Irene van den Hof, Solar Team Twente (2015): “I think that I am a good listener for my teammates. I try to put a lot of emphasis on that. Everyone is young and inexperienced, and that can sometimes cause problems, but together we are indeed a team, and everyone has to reach the finish line – I make sure of that.” (“Ik denk dat ik heel goed kan luisteren naar mijn teamgenoten. Daar probeer ik ook veel aandacht aan te besteden. Iedereen is jong en onervaren en dat kan voor problemen zorgen, maar samen zijn we wel een team en iedereen moet de eindstreep halen, daar zorg ik ook voor.”)

And it’s worth repeating the excellent insights from Rachel Abril, who was on the Stanford solar car team for four years (“Go fast, but not recklessly fast. Test it. Test it again. Test it more. Use failure as a foundation for success.”):


Solar Car Racing Status Check

In solar car racing news, preparations are beginning for the SASOL Solar Challenge in South Africa (September 22 to 30). It seems that both Nuon and Tokai will attend this event, along with local teams.


Nuon at WSC 2017 (photo: Anthony Dekker)

Thirteen teams have registered so far for the 24 hour iLumen European Solar Challenge in Belgium (September 19 to 23), and Twente will be defending their title there. I am maintaining an information page and teams list for this race. See also the official iESC social media at  


Twente at WSC 2017 (photo: Anthony Dekker)

The American Solar Challenge is a lot closer than those two races, with scrutineering beginning on July 6, track racing on July 10, and the road race running from July 14 to July 22. I am maintaining a detailed information page and teams list for this race. At last count, 34 teams were registered, with Anderson, UCSD, Principia, UC Irvine, Phoenix, and UT Austin having, sadly, dropped out.

Six teams are attending with cars that raced at WSC 2017, although these cars will require adjustment to satisfy ASC rules (Michigan, Western Sydney, Principia, and Illini, plus the Cruisers PrISUm and Minnesota). Six other teams are attending with cars that previously raced at ASC.


PrISUm at WSC 2017 (photo: Anthony Dekker)

Twenty-two other teams are frantically building cars for ASC. Car unveils that have been announced include team 42 (Missouri) on 18 April, team 55 (Esteban) on 23 April, team 101 (Eclipse) in mid May, team 828 (AppState) in mid June, and team 65 (Calgary) on 16 June.


Missouri’s unfinished car (picture credit)

See my detailed information page and teams list for this race for more information and for social media links. I will continue to update that page as news comes in.