Aircraft size comparison

Time for something not about solar cars…

Revisiting my post on the R100 airship, here is a more detailed aircraft size comparison (click to zoom). All aircraft are to scale.


The R100 and the R101

An instructive saga in the history of engineering is the story of the British airships R100 and R101. As part of a grand social experiment, the R100 was built by private industry (it was designed by Barnes Wallis), while the R101 was built by the British government (specifically, by the Air Ministry, under Lord Thomson). The R100 worked fine, and made a test flight to Canada in August 1930 (the trip took 78 hours). Here is the R100 over a Toronto building:

The R100 was huge. Here is a size comparison of the R100 (219 m long) and an Airbus A380 (73 m long):

While the government-built R101 used servo motors to control its gigantic rudder, the R100 team had worked out that the rudder could actually be operated quite easily by hand, using a steering wheel and cables. The government-built R101 was beset by poor choices, in fact. It contained overly heavy engines, a steel frame, and too much dead weight overall. After construction, the R101 had to be lengthened by inserting a new 14-metre section in the centre, in order to increase lift. This alteration caused a number of problems. Its design also allowed the internal hydrogen-filled gasbags to chafe against the frame, there were serious problems with the outer covering, and several “innovative” design ideas were never properly tested.

There was enormous political pressure for the R101 to fly before it was ready to do so. On the evening of 4 October 1930, it departed for India with a crowd of VIPs on board. It never arrived, crashing in bad weather over France, and bursting into flames. The disaster led to the R100 also being grounded, and the British government abandoned any thoughts of flying airships (as the rest of the world was to do after the Hindenburg disaster).

There are all kinds of lessons to be drawn from the saga of the R100 and the R101. One of them is that optimism is not a viable strategy for safety-critical engineering. Another is that engineers test things. As Kipling says, “They do not preach that their God will rouse them a little before the nuts work loose.” A third is that risky designs and fixed deadlines simply do not mix.