World Solar Challenge September 3 update

In the leadup to the 2019 Bridgestone World Solar Challenge in Australia this October, most cars have been revealed (see my recently updated illustrated list of teams), with JU’s reveal a few days ago (see below), and Tokai’s reveal due in a few hours.

There are now 9 international teams in Australia (more than the number of local teams). Eindhoven (#40), Agoria (#8), and part of Vattenfall (#3) are driving north to Darwin, while Top Dutch (#6) have a workshop in Port Augusta (and living quarters in Quorn).


JU’s solar car Axelent (photo credit)

The chart below shows progress in submitting compulsory design documents for the race. White numbers highlight eight teams with no visible car or no visible travel plans:

  • #86 Sphuran Industries Private Limited (Dyuti) – this team is probably not a serious entry. I will eat my hat if they turn up in Darwin.
  • #63 Alfaisal Solar Car Team – recently, they have gone rather quiet, but they have a working car.
  • #89 Estidamah – they have not responded to questions. They also might not turn up, although they have obtained several greens for compulsory documents.
  • #80 Beijing Institute of Technology – they never say much, but they always turn up in the end. I don’t expect this year to be any different.
  • #4 Antakari Solar Team – they are clearly behind schedule, but they are an experienced team. They will probably turn up. (edit: they have revealed a beautiful bullet car)
  • #55 Mines Rabat Solar Team – they seem to have run out of time. Can they finish the car and raise money for air freight? I’m not sure. (edit: it seems that they will attend the Moroccan Solar Challenge instead of WSC)
  • #98 ATN Solar Car Team and #41 Australian National University  – these teams are obviously in trouble but, being Australian, they should still turn up in Darwin with a car. (edit: both teams have since revealed cars)



Advertisements

World Solar Challenge late August update

In the leadup to the 2019 Bridgestone World Solar Challenge in Australia this October, most cars have been revealed (see my recently updated illustrated list of teams), and the first few international teams (#2 Michigan, #3 Vattenfall, #6 Top Dutch, #8 Agoria, and #40 Eindhoven) have arrived in Australia (see map above). Bochum (#11), Twente (#21), and Sonnenwagen Aachen (#70) are not far behind. Eindhoven (#40) are currently engaged in a slow drive north, while Top Dutch (#6) have a workshop in Port Augusta (and living quarters in Quorn).

Meanwhile, pre-race paperwork is being filled in, with Bochum (#11) and Twente (#21) almost complete. Sphuran Industries from India (#86) is not looking like a serious entrant. On a more positive note, though, Jönköping University Solar Team (#46) is revealing their car later today!


Solar car map of the Netherlands plus borderlands

Below (click to zoom) is a solar car map of the Netherlands (north, south, east, west), plus the German cities of Aachen & Bochum and the Belgian city of Leuven, which are close enough to the Dutch border to be in the map region. That’s 7 solar car teams in a very small corner of the world! (base map modified from one by Alphathon).


World Solar Challenge: current activities

 
 
Four representative solar car team activities in the lead-up to the World Solar Challenge in October – Top left: Cambridge revealed their Cruiser on 15 August (photo: Nigel); Top right: Solar Team Eindhoven packed up their Cruiser for air transport to Australia, as also did Top Dutch (photo: Bart van Overbeeke / STE); Bottom left: Agoria Solar Team (Belgium) did some final testing at Beauvechain Air Base in less than perfect weather (credit); Bottom right: Bochum SolarCar Projekt is staring at a map as their container slowly travels to Australia by sea – the ship was expected in Fremantle today, en route to Melbourne and Sydney (credit)


World Solar Challenge: statistics and recent news

 
 
Top left: Onda Solare revealed their modified Cruiser Emilia 4 LT on 31 July (credit); Top right: Western Sydney revealed their new monohull Challenger Unlimited 3.0 on 7 August (photo: Anthony Dekker); Bottom left: STC revealed their unusual passenger-behind-driver Cruiser on 8 August (credit); Bottom right: Durham revealed their asymmetric Challenger Ortus on 12 August (credit)

We have had a few new solar car reveals recently (see above – click to zoom). The pie chart below shows current statistics (excluding #67 Golden State and #86 Dyuti, which do not seem to be active teams). Among the Challengers, the designs for #4 Antakari, #10 Tokai, and #18 EcoPhoton are still unknown.

Monohulls remain a minority among the Challengers (though a minority that has doubled in size since 2017). I am using the term “outrigger” for cars with monohull bodies but wheels sticking well out to the sides (the two new Swedish teams, #23 HUST and #51 Chalmers). There are also two quite different wide symmetric cars (#22 MDH and #63 Alfaisal). Among the Cruisers, 4-seaters remain a minority, in spite of the substantial points benefit for carrying multiple passengers. As always, see my regularly updated illustrated teams list for details.


Australia’s fastest solar car team is now even faster!


The Western Sydney University team reveals their new car (photo: Anthony Dekker)

Australia’s champion Challenger-class solar car team (not to detract from the two excellent Cruiser-class teams, Arrow and Sunswift) is Western Sydney University, who have just revealed their exciting new solar car (above and below).


Another view of the WSU car, which is a monohull design with a gallium arsenide array (photo: Anthony Dekker)

After being forced to trailer in the 2013 World Solar Challenge, Western Sydney University came 10th in 2015 and 6th in 2017 (see graph below). And that 2017 result did not do their car justice, because in 2018 they went on to defeat the second-place team, Michigan. Their superb new car (above) is engineered to be even faster. Could they win this year? Or does the Dutch team from Delft have a stranglehold on the top position? I guess we’ll just have to wait and see…


Mathematics and Art: Why can’t we be friends?


The figures of Geometry and Arithmetic by the Coëtivy Master, late 15th century (detail from Philosophy Presenting the Seven Liberal Arts to Boethius)

For most of history, mathematics and the visual arts have been friends. Art was not distinguished from what we now call “craft,” and mathematics – geometry and arithmetic – provided both a source of inspiration and a set of tools. Polykleitos, for example, in the 5th century BC, outlined a set of “ideal” proportions for use in sculpture, based on the square root of two (1.414…). Some later artists used the golden ratio (1.618…) instead.

Symmetry has also been an important part of art, as in the Navajo rug below, as well as a topic of investigation for mathematicians.


Navajo woollen rug, early 20th century (Honolulu Museum of Art)

The Renaissance saw the beginning of the modern idolisation of artists, with Giorgio Vasari’s The Lives of the Most Excellent Painters, Sculptors, and Architects. However, the friendship between mathematics and art became even closer. The theory of perspective was developed during 14th and 15th centuries, so that paintings of the time have one or more “vanishing points,” much like the photograph below.


Perspective in the Galerie des Batailles at Versailles (base image: 1890s Photochrom print, Library of Congress)

Along with the theory of perspective, there was in increasing interest in the mathematics of shape. In particular, the 13 solid shapes known as Archimedean polyhedra were rediscovered. Piero della Francesca rediscovered six, and other artists, such as Luca Pacioli rediscovered others (the last few were rediscovered by Johannes Kepler in the early 17th century). Perspective, polyhedra, and proportion also come together in the work of Albrecht Dürer. Illustrations of the Archimedean polyhedra by Leonardo da Vinci appear in Luca Pacioli’s book De Divina Proportione.


Illustration of a Cuboctahedron by Leonardo da Vinci for Luca Pacioli’s De Divina Proportione (1509)

Some modern artists have continued friendly relations with mathematics. The Dutch artist M. C. Escher (reminiscent of Dürer in some ways) sought inspirations in the diagrams of scientific publications, for example.


Tiling by M. C. Escher on the wall of a museum in Leeuwarden (photo: Bouwe Brouwer)

Today it is possible to follow in Escher’s footsteps by studying a Bachelor of Fine Arts / Bachelor of Science double degree at some institutions. There is also a renewed interest in the beauty of mathematical objects, whether three-dimensional (such as polyhedra) or two-dimensional (such as the Mandelbrot set). The role of the artist then becomes that of bringing out the beauty of the object through rendering, colouring, choice of materials, sculptural techniques, and the like.


View of the Mandelbrot set at −0.7435669 + 0.1314023 i with width 0.0022878 (image: Wolfgang Beyer)

Artistic techniques such as these (“must we call them “craft” or “graphic design”?) are also important in the field of data visualisation, and are recognised by the “Information is Beautiful” Awards. Speaking of which, this year’s awards are now open for submissions.