Greenhouse emissions in Australia

I thought I would take the opportunity today to talk about energy production and greenhouse gas emissions in Australia. The chart below shows the populations (blue bars) and population densities of the six Australian states plus the Northern Territory. Note that New South Wales, Victoria, and Queensland have the highest populations (8.2, 6.7, and 5.2 million respectively), while the Northern Territory has the lowest. However, given its smaller area, Victoria has the highest population density (29.4 people per sq km), while Western Australia and the Northern Territory have the lowest population densities (1.1 and 0.2 people per sq km respectively).

The next chart shows the per capita electricity production of the six Australian states and the Northern Territory, by type. These figures are adjusted for net electricity transfer between states. For example, Tasmania imports some mainland coal-fired power.

Notice that the totals are high in the less densely populated regions (Western Australia and the Northern Territory). The total is also high in Tasmania, because of the widespread use of hydro-electrically produced electricity for heating there.

Total per capita electricity production is lowest in Victoria, in part because of the widespread use of natural gas for heating and cooking (total gas use in Australia generally is about 4 times its use in electricity production). Victorian electricity is the dirtiest, however, with heavy use of brown-coal-fired production. Brown coal is by far the dirtiest fuel; it produces about 47% more greenhouse gases per MWh than black coal, and triple the greenhouse gases per MWh of natural gas.

South Australia has achieved 50% renewable energy, but this is not without its problems:

  • Wind and solar power are more expensive, so that South Australians pay about $360 per MWh for their electricity: 44% more than the two large states
  • The sun does not always shine and the wind does not always blow: this means that, in the absence of massive-scale energy storage, South Australia has to “borrow” coal-fired power from the East, although this is eventually repaid with interest
  • Solar and wind power cause substantial grid stability and grid synchronisation issues, which become very apparent at the 50% renewable level – good solutions are needed for this; South Australia currently copes by turning solar power off

To avoid “borrowing” electricity, massive-scale energy storage is required. South Australia would need several days worth of demand, at 40 GWh per day. Their famous Tesla battery has been expanded to a capacity of just 0.2 GWh, which is about a thousandth of what is needed. Batteries appear inadequate for energy storage at the required scale, and hydrogen storage is probably what we want.

Tasmania operates at a 92% renewable electricity level, thanks to multiple hydroelectric dams, which do not suffer from the problems of wind and solar (and availability is only an issue during lengthy droughts). In addition, hydroelectric dams can also provide energy storage for solar and wind power, simply by pumping water uphill. It is unfortunate that environmental groups in Tasmania have campaigned heavily against hydroelectric power.

The last chart shows the per capita CO2-equivalent emissions for state electricity generation, plus other emissions (including agriculture, other energy use, industrial processes, waste, forestry, and land use change). Agricultural emissions are highlighted in green. A note of caution, however: the electricity generation data is for 2019, but the total greenhouse emissions are for 2018 (the latest I could find). These numbers cannot be compared to those of other countries, unless the numbers for other countries are equally recent and also include the full range of emissions, per UNFCCC standards (some comparable national averages are shown on the left).

Note that net greenhouse emissions for Tasmania are negative, largely due to tree-planting. Per capita emissions for the large, less densely populated areas are higher than those for New South Wales and Victoria; in part due to transportation requirements (shifting commuters and freight from road to rail would help here). Agricultural emissions per capita are particularly high in the Northern Territory, because the impact of cattle farming is being divided among a tiny population of just 0.2 million people. The overall Australian average of 21.2 tonnes per capita is quite significantly affected by the inevitably high emissions for the large, less densely populated areas. There is also the question of whether emissions due to mining and agriculture should be attributed to the producing country, or to the country of final consumption.

Economically and geographically, Australia is in many ways more like a Central Asian country than a European one, given its large size and its heavy reliance on mining and agriculture (Australia’s greenhouse emissions are comparable to those of Kazakhstan, which produces 21.7 tonnes per capita). However, progress could be made in Australia with more energy-efficient housing and transportation.

It should also be emphasised that, given its small population, Australia’s greenhouse emissions make a neglible contribution to the global and regional climate. If increasing atmospheric CO2 has an effect in Australia’s region, that is due primarily to emissions by the large countries of the world, particularly China (which produces about a third of the world’s CO2). Australia should, no doubt, reduce its greenhouse emissions, but whether Australia does so or not will make no measurable difference to the global or regional climate.


Energy!

Science has a concept called energy, which includes electrical energy, chemical energy, kinetic energy, and other (interconvertible) forms. Energy can be measured, and obeys laws like E =  and E = ½mv2.

Then you have the “energy” involved in “energy medicine.” It does not correspond to energy in the scientific sense, cannot be measured or detected, and obeys no scientific laws. It is obviously not the same as the energy that scientists talk about. Why, one might even think it does not exist


WSC 2013: Final Reflections

Now that the World Solar Challenge is over for another two years, it’s time to reflect on the results, before I get back to my regular blogging.

The Bridgestone World Solar Challenge team has once again organised an excellent race, which covered an entire continent (although there were some unfortunate hiccups with the timing board and with the Silverlight-based live streaming of the awards).
The Nuon Solar Team deserves to be congratulated, for having the fastest car in the Challenger Class (followed by Tokai University and Solar Team Twente). Effective strategy (including planning for the weather) was also critical to reaching the finish line first. My race chart shows how close the battle for first place was.
Solar Team Eindhoven, winner of the Cruiser Class (see my updated post about the results), has shown that practical solar cars (carrying multiple people) are not all that far away from commercialisation. All kind of interesting applications can be imagined for vehicles like “Stella” – or indeed vehicles like the equally interesting Sunswift eVe or PowerCore SunCruiser.
The Netherlands has demonstrated strong expertise in solar car technology, with centres of excellence at Delft University of Technology, Eindhoven University of Technology, and the University of Twente. The Netherlands took out the Challenger #1, Challenger #3, and Cruiser #1 positions in the race. Other European teams took out Challenger #5, Challenger #6, and Cruiser #2 – it was a European-dominated event.
Jeroen Haringman at solarracing.org has done a superb job of analysing the race as it was happening, integrating information from both the official race site and from individual team blogs. When an event spans an entire continent, it’s difficult to get an overall perspective on what’s happening, unless someone does this kind of analysis. The organisers provided some of the raw data (GPS position and timing), but various photos, videos, and comments by participants were scattered around cyberspace, and required collating. One commenter called Jeroen Haringman’s site “the only comprehensible record.”
The individual media teams did a great job in communicating the excitement around the world via YouTube, Twitter, Flickr, and blogs. The media teams of Twente (Dutch video) and Nuon (Dutch video with captions) did particularly well. With enough technology, it becomes almost like being there.
GPS feeds into Google maps were an effective way of covering the race, although varying forms of analysis that were being built on-the-fly during the race need to be developed further. A short-lived experiment with Google Docs was particularly interesting, though limited in several ways.
A “brave attempt” award goes to the two high-school entries, from Goko High School in Japan (their nice-looking Cruiser Class entry lost its rear wheels just outside of Alice Springs), and Choctaw Central High School in Mississippi (their sleek Adventure Class entry developed electrical problems between Katherine and Dunmarra). For a high school to even compete at this level is indeed a major achievement!
The sun has really been the star of the race. It provided the energy that powered the vehicles. But the pictures of the Tokai vehicle stalled in the rain on the morning of the fifth day are a reminder that the sun is not always available. The first three days of the race took place in a part of the world with an average insolation of around 250 W/m2. In cloudier regions and at higher latitudes, average insolation drops to less than half of that, as well as being less consistent. That means that energy storage will always remain a critical part of any solar technology. It also means that solar technology is perhaps better suited to some parts of the world than others.

Finally, let me finish my WSC race coverage with this parting photo (by Jorrit Lousberg) of Team Nuon in the outback. It’s been an exciting week!

WSC 2013: Results (1)

I have updated my race chart from Friday with final results, so click the link to see that. Meanwhile, on Saturday we had the practicality tests for the Cruiser Class:

These scores feed into a four-part formula for calculating the winner of the Cruiser Class, defined officially as follows:

The values of the four components have not yet been released, but Solar Team Eindhoven and “Stella” have won the Cruiser Class, followed by Bochum’s PowerCore SunCruiser. Congratulations!

Here is Eindhoven’s update from yesterday (before the results were known):

World Solar Challenge 2013

The World Solar Challenge is on again, beginning this Sunday. Three thousand kilometres across the Australian desert, from north to south. Forecasts for the next few days indicate sunny weather for the Northern Territory, and 24–34°C (75–93°F). Closer to the centre of the country, we may see temperatures over 40°C (104°F).

A total of 40 teams from 23 countries will take part. Tokai Challenger (photo below by Kohei Sagawa and Hideki Kimura) won the last two events, in 2009 and 2011 (averaging 91.54 km/h in 2011). Can they win again?

The new Cruiser Class is also interesting. Results there will tell us something about when we can expect to see road-registered solar vehicles for sale. Solar Team Eindhoven explains their entry in the YouTube clip below. Are they desert-ready?

Stay tuned to the news, or to the WSC website.

Update: Solar Team Eindhoven have pole position in the Cruiser Class. TeamArrow, from Queensland, have pole position in the Challenger Class, with the best overall lap time. The SIKAT team from DLSU in the Philippines have pole position in the Adventure Class. May the best cars win!