American Solar Challenge 2018: The run to Burns

I recently got my hands on the GPS tracker data for the American Solar Challenge last July. Above (for the 6 Challengers completing the stage) and below (for the Cruisers) are distance/speed charts for the run from Craters of the Moon to Burns, which seems the stage of the route with the best data (at this time of year I haven’t the time for a more detailed analysis). Click on the charts to zoom. Small coloured circles show end-of-day stops.

Stage times were 15:Western Sydney 8:05:16, 101:ETS Quebec 8:20:13, 2:Michigan 8:25:08, 55:Poly Montréal 8:42:52, 4:MIT 9:07:58, and 6:CalSol 9:30:12 for Challengers, and 828:App State 10:22:37, 559:Bologna 12:13:57, and 24:Waterloo 15:29:12 for Cruisers (note that Bologna was running fully loaded on solar power only, while the other Cruisers recharged from the grid).

The data has been processed by IOSiX. I’m not sure what that involved, but I’ve taken the data as gospel, eliminating any datapoints out of hours, off the route, or with PDOP more than 10. Notice that there are a few tracker “black spots,” and that trackers in some cars work better than in others. The small elevation charts are taken from the GPS tracker data, so they will not be reliable in the “black spots” (in particular, the big hill before Burns has been truncated – compare my timing chart).


Advertisements

ASC 35: Road Race Day 6 (morning)


Wyoming to Idaho, Day 5 (picture credits: 1, 2)

Thursday 19 July (Idaho time) dawned with clear skies, promising a good day to finish Stage 3 of the American Solar Challenge.

For the Cruiser (MOV) class, the “cactus” diagram below tells the story for Stages 1 and 2. For each car, the first coloured bar shows the number of person-kilometres (distance driven times the average number of people in the car). The second coloured bar shows the external energy input, which is the number of charges (including the pre-race charge) multiplied by the battery capacity. This bar points downward, because large values are bad. The third coloured bar, which is the final score, is the first bar divided by the second (all bars are scaled so that the highest value is 100%). The numbers are very similar to those for Stage 1 alone. Update: the numbers on the web site have changed, so this chart has been recalculated to match.

Although the American Solar Challenge is far from over, I’m getting a head start on my personal Gem Awards for the race. The “Media Excellence Gem” goes to App State for their regular Facebook, Instagram, Twitter, and well-written blog posts.

And now that the tracker is working (except for the teams marked in grey), we can see that the cars are off and running. The first of them should reach stage end wihin minutes:


ASC 9: Aerodynamics

For both the Challenger class and the Cruiser class, solar car racing is to a large extent about aerodynamic drag. That’s overwhelmingly what the hard-earned solar energy is being wasted on, and therefore it’s what teams need to concentrate on minimising. The drag force on a car is given by the equation:

F = ½ Cd A ρ v2

Breaking that down, v is the speed of the car, ρ is the density of air (about 1.2), A is the frontal area of the car, and Cd is the drag coefficient, a number which indicates how aerodynamic (and therefore, how energy-efficient) the shape of the car is. For Challengers, minimising Cd allows the speed v to be increased, while for Cruisers (for which the average v is essentially given), minimising Cd allows non-solar energy use to be minimised. Of course, minimising frontal area is important too (and that is the motivation behind asymmetric Challenger cars).

To give a feeling for the all-important Cd, here are some vehicles with values ranging from 0.19 to 0.57:


Drag coefficients for a selection of vehicles. Clockwise from top left: 0.57 – Hummer H2 (photo: Thomas Doerfer); 0.30 – Saab 92 (photo: “Liftarn”); 0.26 – BMW i8 (photo: “youkeys”); 0.19 – General Motors EV1 (photo: Rick Rowen)

Because Cd is so all-important, it is the one thing that solar car teams are really secretive about. Challengers generally have values under 0.1. With no need for practicality, they chase their way towards the impossible goal of Cd = 0, trying to come up with the perfect race car, which will slice through air like a hot knife through butter:


Nuon’s 2005 car, Nuna 3, with Cd = 0.07 (photo: Hans-Peter van Velthoven)

Cruisers, on the other hand, have to balance aerodynamics with practicality. Bochum’s early SolarWorld GT had Cd = 0.137:


Bochum’s 2011 car, SolarWorld GT, with Cd = 0.137 (photo: “SolarLabor”)

Eindhoven’s recent Stella Vie, with its sleek aerodynamic shape, does much better than that (but they won’t say how much better):


Eindhoven’s 2017 car, Stella Vie (photo: TU Eindhoven, Bart van Overbeeke)

I understand that Sunswift’s 2013–2015 car eVe had Cd = 0.16. Appalachian State (Sunergy) have stated that their newly-built ROSE has Cd = 0.17. PrISUm’s Penumbra has a higher value (Cd = 0.2), because of the blunt end which they chose for practicality reasons (although they did do a few clever things to reduce the impact of that blunt end). I’m not aware of the Cd values for other ASC cars.


Appalachian State’s beautiful ROSE, with Cd = 0.17 (image credit)