The fascination of large stones

There is a perennial interest in the megaliths (large stones) used in ancient construction. Sometimes the interest is driven by conspiracy theories. But what are the facts?

Stonehenge (click to zoom, photo by Adrian Pingstone – link)

Around 2580 BC, construction of the Great Pyramid of Giza began, using stones of up to 50 metric tonnes in weight. At about the same time, stones of similar weight were being erected at Stonehenge. Somewhat later, in 1350 BC, the Colossi of Memnon (650-tonne statues) were erected in Egypt

The Western Stone, Jerusalem (photo by David Shankbone – link)

The Western Stone is a large stone block at the base of the Western Wall in Jerusalem. It formed part of the Jewish Temple built by Herod the Great. Herodian architecture was characterised by large closely-fitting chiselled stone blocks, and the Western Stone is one of the largest, weighing about 500 metric tonnes.

Stone of the Pregnant Woman, Baalbek

At about the same time, construction of the Temple of Jupiter began in what is now Baalbek, Lebanon. Stones of up to 800 metric tonnes were used in the foundations. The quarry was 900 metres away, and still contains the 1,000-tonne Stone of the Pregnant Woman, which was not completely separated from the surrounding rock, and was never used. This stone was quarried at an angle, in order to allow it to be easily dropped onto rollers or a sledge.

Later centuries saw the Moai statues of Easter Island and the walls of Cuzco, although these involved weights far less than those of Roman construction.

The Russian Thunder Stone, during transport and in final form (photo on right by Andrew Shiva – link)

The Thunder Stone was a large granite boulder (of about 1,500 metric tonnes) discovered in Russia and transported to Saint Petersburg to be used (after some shaping) as the base of a statue of Peter the Great. Transport took about nine months, being completed in 1770. On land, a sledge was used, pulled by 400 men and rolling over bronze spheres. A special barge was used at sea. This boulder represents the pinnacle of megalith construction. For comparison, its weight was a little over the maximum capacity of a modern mobile crane, such as the Liebherr LTM 11200-9.1.

Construction of the Mussolini Obelisk, Rome

One of the most recent examples is the Mussolini Obelisk in Rome, constructed in 1929 during the fascist regime of Benito Mussolini. Carved from Carrara marble, it weighed around 300 metric tonnes, and was transported on land using a sledge running over planks lubricated with soap. The sledge was pulled by 36 pairs of oxen in Tuscany, and by a tractor in Rome. As with the Thunder Stone, a barge was used at sea. This was perhaps the last example of megalith construction using primarily ancient techniques. Since then, there have been more impressive examples of construction, but using smaller components, newer techniques, and more modern materials. The days of using large stones are over!

The chart below summarises the megaliths we have listed here.

The Oikoumene of Ptolemy

I was reading recently about the Geographia of Ptolemy (written around 150 AD). This classic book applied Greek mathematical skills to mapping and map projection – and if there was one thing the Greeks were good at, it was mathematics. According to Neugebauer, Ptolemy believed the Oikoumene, the inhabited portion of the world, to range from Thule (63° North) to 16°25′ South, and 90 degrees East and West of Syene in Egypt.

The map above illustrates this Oikoumene, with a modern population overlay in red (data from SEDAC). Ptolemy was not too far wrong – today this region holds 80.6% of the world’s population, and the percentage would have been greater in antiquity.

Also shown on the map are some of the many cities listed in the Geographia. Open circles show Ptolemy’s coordinates (from here, adjusted to a Syene meridian), and filled circles show true positions. Ptolemy had reasonably good latitude values (an average error of 1.2° for the sample shown on the map), but much worse longitude values (an average error of 6.8°). The longitude error is mostly systemic – Ptolemy’s estimate of 18,000 miles or 29,000 km for the circumference of the earth was only 72% of the true value (several centuries earlier, Eratosthenes had come up with a much better estimate). If Ptolemy’s longitudes are adjusted for this, the average error is only 1.5°.

However, Ptolemy’s book deserves considerable respect – it is not surprising that it was used for more than a thousand years.

A Medieval Calendar

The beautiful image above (click to zoom) represents the month of September in the Très Riches Heures du Duc de Berry, a book of hours from the 1400s. In the background of the main picture is the Château de Saumur, with its height exaggerated (almost doubled). For comparison, below is a modern photograph of the château (by Kamel15) stretched vertically ×2:

The foreground of the main picture shows the grape harvest. At the top is a complex calendar. On the inner track, around the chariot of the sun, in red and black numerals, are the days of the month. On the outer track, in red and blue numerals, is a zodiacal calendar, showing the last days of Virgo and the beginning of Libra. Adjacent to the inner track are blue letters which relate to the 19-year Metonic cycle. Combining those letters with an appropriate table will show the phases of the moon for a given year.

The manuscript uses the Hindu-Arabic numerals first introduced to Europe by Fibonacci in his Liber Abaci of 1202. They are not quite the same as the ones we use today:

It is interesting to compare those digits with the ones in this German manuscript of 1459 by Hans Talhoffer (although Talhoffer actually mixes two different styles of 5). Then again, the letters of the alphabet have also changed since that time.

Recreational mathematics

The wolf, the goat, and the cabbages

Dancing alongside the more serious practitioners of mainstream mathematics are the purveyors of mathematical puzzles and problems. These go back at least as far as Diophantus (c. 200–284), the Alexandrian “father of algebra.” Alcuin of York (c. 735–804) produced a collection of problems that included the the wolf, the goat, and the cabbages (above); the three men who need to cross a river with their sisters; and problems similar to the bird puzzle published by Fibonacci a few centuries later. In more modern times, Martin Gardner (1914–2010) has done more than anyone else to popularise this offshoot of mathematics. It is often called “recreational mathematics,” because people do it for fun (in part because they are not told that it is mathematics).

Particularly popular in recent times have been Sudoku (which is really a network colouring problem in disguise) and the Rubik’s Cube (which illustrates many concepts of group theory, although it was not invented with that in mind). Sudoku puzzles have been printed in more than 600 newspapers worldwide, and more than 20 million copies of Sudoku books have been sold. The Rubik’s Cube has been even more popular: more than 350 million have been sold.

A Soma cube, assembled

Recreational puzzles may be based on networks, as in Hashi (“Bridges”). They may be based on fitting two-dimensional or three-dimensional shapes together, as in pentominoes or the Soma cube. They may be based on transformations, as in the Rubik’s Cube. They may even be based on arithmetic, as in Fibonacci’s problem of the birds, or the various barrel problems, which go back at least as far as the Middle Ages.

In one barrel problem, two men acquire an 8-gallon barrel of wine, which they wish to divide exactly in half. They have an empty 5-gallon barrel and an empty 3-gallon barrel to assist with this. How can this be done? It is impossible to accurately gauge how much wine is inside a barrel, so that all that the men can do is pour wine from one barrel to another, stopping when one barrel is empty, or the other is full [highlight to show solution → (8, 0, 0) → (3, 5, 0) → (3, 2, 3) → (6, 2, 0) → (6, 0, 2) → (1, 5, 2) → (1, 4, 3) → (4, 4, 0)]. There is a similar problem where the barrel sizes are 10, 7, and 3.

The barrels

Apart from being fun, puzzles of this kind have an educational benefit, training people to think. For this reason, Alcuin called his collection of problems Propositiones ad Acuendos Juvenes (Problems to Sharpen the Young). Problems like these may also benefit the elderly – the Alzheimer’s Association in the United States suggests that they may slow the onset of dementia. This is plausible, in that thinking hard boosts blood flow to the brain, and research supports the idea (playing board games and playing musical instruments are even better).

Some Oldest Manuscripts

The chart below (click to zoom) shows the dates of ten significant written works:

Each work is indicated by a vertical line, which runs from the date of writing to the date of the oldest surviving complete copy that I am aware of (marked by a dark circle). Open circles show some of the older partial or fragmentary manuscripts (these act as important checks on the reliability of later copies).

Two threshold periods (marked with arrow) are worth remarking on. First, Gutenberg’s printing press – after its invention, we still have at least one first edition for many important works. Second, the invention of Carolingian minuscule – many older works were re-copied into the new, legible script after that time. They were then widely distributed to monasteries around Europe, so that survival from that period has been fairly good. In the Byzantine Empire, Greek minuscule had a similar effect.

The Bible is a special case (I have highlighted one particular gospel on the chart). It was copied so widely (and so early) that many ancient manuscripts survive.

The three men and their sisters

The medieval Propositiones ad Acuendos Juvenes (“Problems to Sharpen the Young”) is attributed to Alcuin of York (735–804), a leading figure in the “Carolingian Renaissance.” He is the middle person in the image above.

Along with the more famous problem of the wolf, the goat, and the cabbage, Propositiones ad Acuendos Juvenes contains the problem of the three men and their sisters. Three men, each accompanied by a sister, wish to cross a river in a boat that holds only two people. To protect each woman’s honour, no woman can be left with another man unless her brother is also present (and if that seems strange, remember that Alcuin was writing more than 1,200 years ago). In Latin, the problem is:

“Tres fratres erant qui singulas sorores habebant, et fluvium transire debebant (erat enim unicuique illorum concupiscientia in sorore proximi sui), qui venientes ad fluvium non invenerunt nisi parvam naviculam, in qua non potuerunt amplius nisi duo ex illis transire. Dicat, qui potest, qualiter fluvium transierunt, ne una quidem earum ex ipsis maculata sit?”

The diagram below (click to zoom) shows the state graph for this problem. The solution is left (per tradition) as an exercise for the reader (but to see Alcuin’s solution, highlight the white text below the diagram).

Miss A and Mr A cross
Mr A returns (leaving Miss A on the far side)
Miss B and Miss C cross
Miss A returns (leaving Misses B and C on the far side)
Mr B and Mr C cross
Mr B and Miss B return (leaving Miss C and Mr C on the far side)
Mr A and Mr B cross
Miss C returns (leaving 3 men on the far side)
Miss A and Miss C cross
Mr B returns (leaving the A’s and C’s on the far side)
Mr B and Miss B cross