A History of Science in 12 Books

Here are twelve influential books covering the history of science and mathematics. All of them have changed the world in some way:


1: Euclid’s Elements (c. 300 BC). Possibly the most influential mathematics book ever written, and used as a textbook for more than 2,000 years.


2: De rerum natura by Lucretius (c. 50 BC). An Epicurean, atomistic view of the universe, expressed as a lengthy poem.


3: The Vienna Dioscurides (c. 510 AD). Based on earlier Greek works, this illustrated guide to botany continued to have an influence for centuries after it was written.


4: De humani corporis fabrica by Andreas Vesalius (1543). The first modern anatomy book.


5: Galileo’s Dialogue Concerning the Two Chief World Systems (1632). The brilliant sales pitch for the idea that the Earth goes around the Sun.


6: Audubon’s The Birds of America (1827–1838). A classic work of ornithology.


7: Darwin’s On the Origin of Species (1859). The book which started the evolutionary ball rolling.


8: Beilstein’s Handbook of Organic Chemistry (1881). Still (revised, in digital form) the definitive reference work in organic chemistry.


9: Relativity: The Special and the General Theory by Albert Einstein (1916). An explanation of relativity by the man himself.


10: Éléments de mathématique by “Nicolas Bourbaki” (1935 onwards). A reworking of mathematics which gave us words like “injective.”


11: Algorithms + Data Structures = Programs by Niklaus Wirth (1976). One of the early influential books on structured programming.


12: Introduction to VLSI Systems by Carver Mead and Lynn Conway (1980). The book which revolutionised silicon chip design.

That’s four books of biology, four of other science, two of mathematics, and two of modern IT. I welcome any suggestions for other books I should have included.


The wash bottle


Washbottles, old (left, photo: Hannes Grobe) and new (right).

Wash bottles, in one form or another, have been a long-term feature of the chemistry lab. Once they were made of glass, and were operated by blowing. In more recent times, plastic squeeze bottles have been used.

See here for more posts on scientific equipment.


Joseph Dalton Hooker

The botanist Joseph Dalton Hooker was born 200 years ago, on 30 June 1817. Kew Gardens, of which he was the director, has a special event to commemorate him. Hooker travelled on expeditions to Antarctica, India, Palestine, Morocco, and the Western United States. The pictures below are from his The botany of the Antarctic voyage of H.M. discovery ships Erebus and Terror in the years 1839–1843, under the command of Captain Sir James Clark Ross. He also published several volumes on the botany of India.


350 years ago on Friday

On 26 May 1667, Abraham de Moivre was born. This French mathematician gave us, inter alia, the formula named after him:

De Moivre was born to French Protestant parents. When the Edict of Nantes was revoked, he was imprisoned for his beliefs for several years, after which he was allowed to leave for England. De Moivre made important contributions to probability theory, and was a pioneer of analytic geometry. Sadly, he was unable to get a university position in England, and he died in poverty.


Harp History

After some feedback on my harp twins post, I thought I’d say something about the history of the harp. It’s one of the oldest musical instruments (following the flute and the drum). Harps are known to go back to 3500 BC, in Ur. Harp design has varied considerably over the 5500 years since then.


Harpist depicted on the Standard of Ur, c. 2500 BC

Later harps were of particular importance to the Celtic people, and the harp is still a symbol of Ireland today.


The medieval Queen Mary harp, c. 1400s (photo: David Monniaux)

A limitation of harps has been that the strings correspond only to the white keys on the piano. A significant improvement was the pedal harp – initially the single-action version, and from 1810 the double-action version. The double-action pedal harp is typically tuned to C major, the key of 7 flats. There are 7 pedals, with e.g. the C pedal connecting to all the C strings. Using the pedal can effectively shorten all the strings in this group to give either C or C (and the same for other groups of notes).

Child prodigy Alisa Sadikova playing the pedal harp (at age 9)

The pedal harp is the main concert instrument today. Garrison Keillor once described the instrument as “an instrument for a saint” because “it takes fourteen hours to tune a harp, which remains in tune for about twenty minutes, or until somebody opens the door.”


A modern electric lever harp (photo:Athy)

Smaller harps (including modern electric harps, like the one above) use levers to modify individual strings (which makes key changes much more difficult than with the pedal harp). Electric harps weighing up to 8 kg are described as “wearable,” which reminds me a little of this 11 kg grand-daddy of the laptop.

Camille and Kennerly Kitt playing “wearable” electric harps

The harp is often seen as a stereotypically feminine instrument – when I look at American harpists on Wikipedia, I count 10 men and 60 women. There are, however, exceptions.

Jakez François (president of French company Camac Harps) playing jazz


Blue Jeans and Culture

An earlier post touched on the concept of “cultural appropriation.” This label is often applied inappropriately, because the world is more interconnected than most people realise. It has been that way for longer than most people realise (for example, some 4,000 years ago, tin from England was being traded across the Mediterranean sea for use in making bronze). And ideas go back further than most people realise.

As Michael Crichton says in his excellent novel Timeline, “Yet the truth was that the modern world was invented in the Middle Ages. Everything from the legal system, to nation-states, to reliance on technology, to the concept of romantic love had first been established in medieval times. These stockbrokers owed the very notion of the market economy to the Middle Ages. And if they didn’t know that, then they didn’t know the basic facts of who they were. Why they did what they did. Where they had come from.

Consider blue jeans, for example.

Blue jeans are dyed with indigotin, a chemical derived from the indigo plant, which has long been grown in India. But before someone says “cultural appropriation from India,” indigotin was traditionally derived in Europe from the woad plant (northern Britons painted their skins blue with woad). In China, a different plant was used. Essentially, the use of indigotin was a cultural universal. In Germany, where a culture of excellence in organic chemistry grew up during the 19th century, a practical method for making synthetic indigotin was developed at the BASF company in 1897, and the choice of plant became moot.


A cake of indigo dye (photo: David Stroe)

Blue jeans are made from denim, a fabric named after Nîmes in France. During the California gold rush, Levi Strauss, a Jewish-American businessman of German origin, teamed up with Jacob Davis, a Jewish-American tailor of Latvian origin, to make denim work clothing for miners. These blue jeans were strengthened by metal rivets – an idea due to Davis, patented in 1873.

So which culture produced blue jeans – Indian? French? German? Latvian? Jewish? American? One can only say that blue jeans were produced by human culture.


Illustration from the patent application


Angélique du Coudray, pioneer midwife


Angélique du Coudray

Angélique du Coudray (c. 1714–1794) was a pioneering French midwife. In 1759 she published a midwifery textbook, Abrégé de l’art des accouchements. Her introduction notes the fact that incompetence or lack of care can lead to the death of both mother and child, and continues with a politico-religious imperative: “Ignorons-nous que ces deux viâimes étoient chères aux yeux de Dieu, utiles à leur famille, & nécessaires à l’État? C’étoit un dépôt qui nous avoit été confié. Pouvons-nous, en les sacrifiant à un vil intérêt, ne pas trembler sur le compte exact que nous en rendrons un jour à celui qui leur avoit donné l’être?” (“Do we not know that these two lives were dear to the eyes of God, useful to their families, and necessary to the State? They were a deposit which was entrusted to us. Can we, if we sacrifice them to a vile interest, not tremble at the exact account that we shall one day render to Him who gave them to be?”).

To avoid such deaths, du Coudray explains proper prenatal care, and provides instruction on both normal deliveries and a range of common obstetric problems.


Illustration of a normal delivery, from the 1777 edition of Abrégé de l’art des accouchements

Also in 1759, Angélique du Coudray was commissioned by King Louis XV to tour the country training midwives, in the hope of reducing perinatal mortality. She personally trained thousands of midwives, many of whom went on to train others. Her training course was assisted not only by her book, but also by her Machine, a pioneering lifesize obstetric simulator. The Machine included realistic internal structure, such as bones and ligaments, and could be used to practice delivery of a baby in a range of different positions, while giving the trainee midwife a feel for the forces involved.


Angélique du Coudray’s Machine (photo: Ji-Elle)