The High School Solar Car Challenge: some physics

This year I am covering the (High School) Solar Car Challenge, as well as the upcoming university competitions. The high school event will take place at the Texas Motor Speedway on July 15–22 (with Covid protocols in place), and will be live-streamed via the event’s YouTube channel. Today I want to say something about high school solar cars in comparison to world-class cars.

Left: Cougar Spirit from Covenant Christian Academy is a high school car in the Advanced Classic Division / Right: Nuna11 is a world-class car from Delft University of Technology in the Netherlands (picture by @lightatwork)

The two main drag forces operating on cars are rolling resistance and aerodynamic drag. The former is indicated in the chart below by red lines. It is a function of the product of the rolling resistance Crr of the tyres times the mass M of the car in kilograms.

The aerodynamic drag is indicated in the chart below by blue lines. It is a function of the product of the drag coefficient Cd of the body shape, the frontal area A of the car in square metres, and the square of the velocity.

The chart at the bottom of the page expresses the same information in terms of the power (in watts) required to overcome drag at various speeds.

At the world-class level, where special low-rolling-resistance tyres are available and cars glide through the air like a hot knife through butter (low values of Crr M and Cd A), the aerodynamic drag is much greater than the rolling resistance at race speeds, and shaving a few percent off the Cd A value becomes critical to winning. At high school level, with cars that students can afford and racing speeds from 15 to 50 km/h (10 to 30 mph), aerodynamic drag and rolling resistance are roughly similar, and reducing the weight of the car becomes especially important. Some of the high school classes do not permit hub motors, and for those cars, reducing drive train losses is also critical.

A few high school cars in the Advanced Division are both under 200 kg and quite aerodynamic this year (e.g. Invictus from the Iron Lions and Lumidos from Oregon Solar Car Team), so it will be very interesting to see how they perform.


1 thought on “The High School Solar Car Challenge: some physics

  1. Pingback: The High School Solar Car Challenge: Day 2 | Scientific Gems

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.