The modern Trivium and the teaching of science

The “trivium” approach to education derives from “The Lost Tools of Learning,” a 1947 speech by scholar and detective story author Dorothy L. Sayers. This approach takes the seven liberal arts (illustrated above), drops the all-important quadrivium, and applies the remainder in a largely metaphorical way. It is an interesting approach, although it inevitably under-emphasises mathematics. The door to Plato’s Academy was marked “Let no one ignorant of geometry enter (Ἀγεωμέτρητος μηδεὶς εἰσίτω),” and this referred to the most advanced mathematic of his day. I’m not sure that the “trivium” approach to education delivers that level of mathematical knowledge. Then again, does the standard approach?

ΑΓΕΩΜΕΤΡΗΤΟΣ ΜΗΔΕΙΣ ΕΙΣΙΤΩ

Science, on the other hand, can be fitted quite well into the “trivium” model. The three stages of this model (largely metaphorical, as noted) are “grammar,” “logic,” and “rhetoric.”

The “grammar” stage (intended for ages 6 to 10 or so) covers basic facts. Science at this level logically includes what used to be called natural history – the close observation of the natural world. Maintaining a nature journal is an important part of this, as are simple experiments, the use of a telescope, collections of objects (rocks, shells, etc.), and simple measurements (such as recording measurements from a home weather station).



Mother and child nature journaling examples from Nature Study Australia Instagram and website

Dorothy L. Sayers has nothing to say about science in the “logic” stage (apart from fitting algebra and geometry here), but the “logic” stage would reasonably include taxonomies, empirical laws, and an exploration of how and why things work the way they do – that is, the internal logic connecting scientific observations and measurements. A degree of integration with history education would provide some context regarding where these taxonomies and laws came from, and why they were seen as important when they were formulated.


Exploring Boyle’s law with a simple apparatus

In the “rhetoric” stage, the “how” and “why” of science would be explored in more detail, along with practical applications and project work (such as entering a science competition, or possibly even collaborating with local academics on a scientific conference paper).


A US Army engineer helps judge high school science projects (photo: Michael J. Nevins / US Army)

I suspect that quite a decent science education programme could be worked out on such a basis. If any reader knows of it having been done, please add a comment.


Advertisement

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.