Measuring the Earth this (Southern) Christmas

In around 240 BC, Eratosthenes calculated the circumference of the Earth. The diagram above (from NOAA) shows how he did it. This Christmas, people in the Southern Hemisphere can repeat his work!

Eratosthenes knew that, at the summer solstice, the sun would be directly overhead at Syene (on the Tropic of Cancer) and would shine vertically down a well there. He also knew the distance to Syene.

On 21 December, the sun will be directly overhead on the Tropic of Capricorn at local noon. This table show the time of local noon on 21 December 2017, and the distance to the Tropic of Capricorn, for some Southern Hemisphere cities:

City Local Noon Distance to Tropic (km)
Adelaide 13:14 1270
Auckland 13:19 1490
Brisbane 11:46 450
Buenos Aires 12:52 1240
Darwin 12:45 1220
Hobart 13:09 2160
Johannesburg 12:06 310
Melbourne 13:18 1590
Perth 12:15 940
Santiago 13:41 1110
Sydney 12:53 1160

At exactly local noon, Eratosthenes measured the length (s) of the shadow of a tall column in his home town of Alexandria. He knew the height (h) of the column. He could then calculate the angle between the column and the sun’s rays using (in modern terms) the formula θ = arctan(s / h).

You can repeat Eratosthenes’ calculation by measuring the length of the shadow of a vertical stick (or anything else you know the height of), and using the arctan button on a calculator. Alternatively, the table below show the angles for various shadow lengths of a 1-metre stick. You could also attach a protractor to the top of the stick, run a thread from the to of the stick to the end of the shadow, and measure the angle directly.

The angle (θ) between the stick and the sun’s rays will also be the angle at the centre of the Earth (see the diagram at top). You can then calculate the circumference of the Earth using the distance to the Tropic of Capricorn and the fact that a full circle is 360° (the circumference of the Earth will be d × 360 / θ, where d is the distance to the Tropic of Capricorn).

Height (h) Shadow (s) Angle (θ)
1 0.02
1 0.03
1 0.05
1 0.07
1 0.09
1 0.11
1 0.12
1 0.14
1 0.16
1 0.18 10°
1 0.19 11°
1 0.21 12°
1 0.23 13°
1 0.25 14°
1 0.27 15°
1 0.29 16°
1 0.31 17°
1 0.32 18°
1 0.34 19°
1 0.36 20°
1 0.38 21°
1 0.4 22°
1 0.42 23°
1 0.45 24°
1 0.47 25°
1 0.49 26°
1 0.51 27°
1 0.53 28°
1 0.55 29°
1 0.58 30°
1 0.6 31°
1 0.62 32°
1 0.65 33°
1 0.67 34°
1 0.7 35°
1 0.73 36°
1 0.75 37°
1 0.78 38°
1 0.81 39°
1 0.84 40°
1 0.87 41°
1 0.9 42°
1 0.93 43°
1 0.97 44°
1 1 45°

Advertisements

One thought on “Measuring the Earth this (Southern) Christmas

  1. Pingback: Australians know that the world is round | Scientific Gems

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.